Ordena zkia Nº orden

PRUEBA DE ACCESO A CICLOS FORMATIVOS HEZIKETA ZIKLOETARA SARTZEKO PROBA

ABRIL 2018 / 2018KO APIRILA

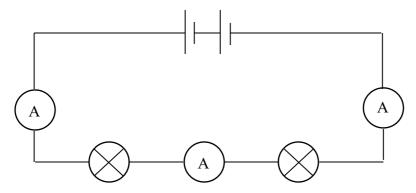
GOI MAILAKO ZIKLOAK / CICLOS DE GRADO SUPERIOR ATAL ESPEZIFIKOA / PARTE ESPECÍFICA

B

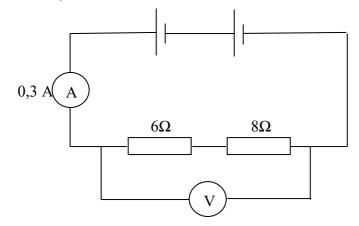
FISIKA/FÍSICA

Abizenak Apellidos			
Izena Nombre			
N.A.N. D.N.I			
IKASLEARI Firma del alı	EN SINADURA ımno/a		

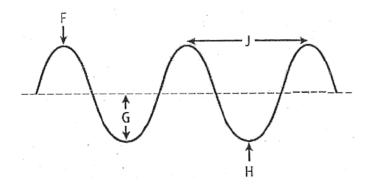
1.- Jar ezazu hurrengo taulan, galdera bakoitzarentzat aukeratu duzun erantzuna: (6 puntu)

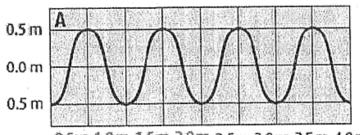

BETI DA FRANTZUN BAKARRA (A. B. C edo D) eta erantzun okerrek ez dute punturik kentzen

			LIID	7 LIVA	14120	IN DAI	'AIIIIA	· (\(\tau\), \(\to\),	, c cuo	D) Cla	CTATICZU	II OKCII	CK CZ U	ate pai	ILUIIN K	CIICZCII.	1		
1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	1.10	1.11	1.12	1.13	1.14	1.15	1.16	1.17	1.18	1.19	1.20
								1											l

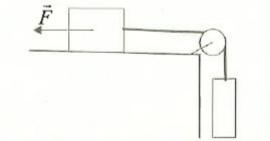

- 1.1.90 km/h-ko abiadura SI-ko unitateetan da:
 - A) 1500 m/s
 - B) 324 m/s
 - C) 25 m/s
 - D) 0,09 m/s
- 1.2. Etxeko tresna batean 150W jartzen badu, 10 minutu konektatuta dagoenean kontsumitzen duen energia da:
 - A) 1500 J
 - B) 15 J
 - C) 90000 J
 - D) 0,33 J
- 1.3. Kantitate hauen artetik zeinek adierazten du abiadurarik handiena?
 - A) 30 m/s
 - B) 300 cm/s
 - C) 0,3 km/s
 - D) 3 m/min
- 1.4. Auto batek uniformeki azeleratzen du, geldiunetik abiatuta, eta 180 km/h-ko abiadura lortzen du 40 s-tan. Zein izan da bere azelerazioa?
 - A) 500 m/s^2
 - B) $1,25 \text{ m/s}^2$
 - C) 150 m/s²
 - D) $4,5 \text{ m/s}^2$
- 1.5. Marruskadura-koefizientearen (μ) unitateak dira:
 - A) m/s
 - B) N
 - C) ez du unitaterik
 - D) m/s^2
- 1.6. Auto baten energia zinetikoak 400 kJ balio du autoaren abiadura 20 m/s denean. Zer balio izango du magnitude horrek abiadura 10 m/s denean?
 - A) 300 kJ
 - B) 200 kJ
 - C) 100 kJ
 - D) 50 kJ

1.7. Lurretik 40 m-ko altuerara dagoen 5 kg-ko gorputzaren energia potentzial grabitatorioa da: (Datua: g = 9,8 m/s 2) A) 1960 N B) 980 J C) 1960 J D) 200 N
1.8. Gorputz baten pisua 1176 N-ekoa bada, esan dezakegu bere masa dela: (Datua: g = 9.8 m/s²)
A) 11524,8 N B) 120 kg C) 11524,8 kg D) 120 N
1.9. Erortzen uzten den harri bat 29,4 m/s-ko abiadurarekin iristen bada lurrera, honako altueratik erori da: (Datua: g=9,8 m/s 2)
A) 844,76 m B) 49 m C) 44,1 m D) 20 m
1.10. Gorputz batek 2500 m-ko bide horizontala egiten du 30 N-eko indar horizontalari esker. Prozesu honetan gorputzaren gain egindako lana da:
A) 75000 J B) 225·10 ⁴ J C) 83,33 J D) 225J
1.11. 50 kg-ko gorputzaren energia zinetikoa 2500 J-ekoa bada, gorputzak daraman abiadura da:
A) 50 m/s B) 5,10 m/s C) 10 m/s D) 9,8 m/s
1.12. 15 kg-ko motxila bat 40 minutuz 5 m-ko altueran eutsi baduzu, honako lana egin duzu:
A) 600J B) 0 J C) 75 J D) 3000 J


- 1.13.Indar-normalak beti eragiten du:
 - A) Higidurarekiko perpendikularki
 - B) Higiduraren aurkako noranzkoan
 - C) Bertikalki eta goraka
 - D) Gainazalarekiko perpendikularki eta goraka
- 1.14. 300 bira/min ematen duen gurpil baten abiadura angeluarra (ω) da:
 - A) 100π rad/s
 - B) 3600π rad/s
 - C) 10 rad/s
 - D) $10\pi \text{ rad/s}$
- 1.15. Irudiko zirkuituan A_1 anperemetroak 0,6 A adierazten du. Zer adieraziko dute A_2 eta A_3 anperemetroek?
 - A) $A_2 = 0.4$ A; $A_3 = 0.2$ A
 - B) $A_2 = 0.2 A$; $A_3 = 0 A$
 - C) $A_2 = 0.6 A$; $A_3 = 0.6 A$
 - D) $A_2 = 1.2 A$; $A_3 = 1.8 A$


- 1.16. Irudiko zirkuituan, kalkulatu zer balio adieraziko duen V voltimetroak.
 - A) 3 V
 - B) 4,2 V
 - C) 6 V
 - D) 14,3 V

- 1.17. Zeharkako uhin harmonikoaren higidura ekuazioa, SI-ko unitateetan
- $y = 0.6 \sin (50\pi t 0.25x)$ bada, bere ezaugarriak dira:
 - A) A=0.25m; $\omega=0.5$ rad/s
 - B) A=0,6m; ω =50 π rad/s
 - C) A=0,6m; ω = 50 rad/s
 - D) A = 0.3m; $\omega = 0.25 \text{ rad/s}$
- 1.18. Uhinaren zer ezaugarri adierazten du J hizkiak?
 - A) Anplitudea
 - B) Uhin-luzera
 - C) Gailurra
 - D) Maiztasuna


1.19. Irudiko uhina emanda, kalkulatu dagozkion anplitudea eta uhin-luzera.

- 0.5 m 1.0 m 1.5 m 2.0 m 2.5 m 3.0 m 3.5 m 4.0 m.
- A) A = 1 m; $\lambda = 1 \text{ m}$
- B) A=0.5 m; $\lambda=1 \text{ m}$
- C) A=0.5 m; $\lambda=0.5 \text{ m}$
- D) A=1m; $\lambda=2$ m
- 1.20. Uhin baten periodoa 0,25 s bada eta bere uhin luzera 60 cm, dagokion hedapen abiadura da:
 - A) 25,13 m/s
 - B) 0,15 m/s
 - C) 240 m/s
 - D) 2,4 m/s

	ntu) Gorputz bat lurretik botatzen da bertikalki eta goraka eta 4 m-ko altueratik an 20 m/s-ko abiadura darama. (OHARRA: g = 9.8 m/s ² hartu) ezazu:
a)	Zein abiadurarekin bota den.
b)	Zenbat denbora behar duen, bota denetik, gehiengo altuera lortzeko.
c)	Lortzen duen gehiengo altuera lurretik neurtuta.

3. (2 puntu)

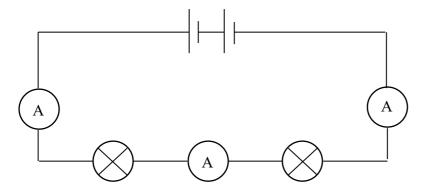
Irudiko sistema mugitzen ari da F indar horizontalari esker. Indarraren balioa 1200 N da, gorputza eta gainazalaren arteko marruskadura koefiziente zinetikoa 0,25 eta masak: 40 kg (gainazalean dagoena) eta 90 kg (zintzilik dagoena). **OHARRA:** g = 9,8 m/s² hartu.

a) Adieraz ezazu, arrazoituz, zein den sistemaren higiduraren noranzkoa.

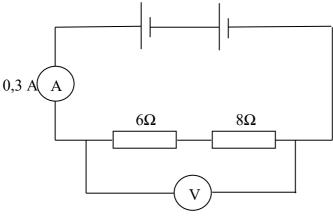
b) Kalkula ezazu sistemaren azelerazioa.

c) Kalkula ezazu sokaren tentsioa.

1. Señala en la siguiente tabla la respuesta elegida para cada pregunta: (6 puntos)

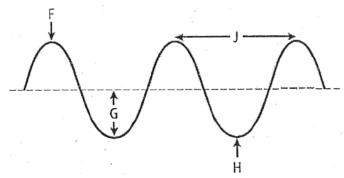

SIEMPRE ES RESPUESTA ÚNICA (A, B, C o D) y las respuestas erróneas no quitan puntos.

								- 1, -	,	1 1									
1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	1.10	1.11	1.12	1.13	1.14	1.15	1.16	1.17	1.18	1.19	1.20

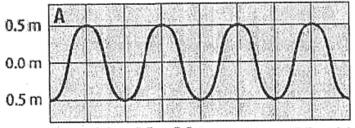

- 1.1. La velocidad 90 km/h en unidades del SI es:
 - A) 1500 m/s
 - B) 324 m/s
 - C) 25 m/s
 - D) 0,09 m/s
- 1.2. Si un electrodoméstico indica 150W, al estar 10 minutos conectado la energía consumida es:
 - A) 1500 J
 - B) 15 J
 - C) 90000 J
 - D) 0,33 J
- 1.3. ¿Cuál de las siguientes cantidades representa la mayor velocidad?
 - A) 30 m/s
 - B) 300 cm/s
 - C) 0,3 km/s
 - D) 3 m/min
- 1.4. Un auto acelera uniformemente, partiendo del reposo, y consigue una velocidad de 180km/h en 40 s. Su aceleración ha sido:
 - A) 500 m/s²
 - B) $1,25 \text{ m/s}^2$
 - C) 150 m/s²
 - D) $4,5 \text{ m/s}^2$
- 1.5. Las unidades del coeficiente de rozamiento (μ) son:
 - A) m/s
 - B) N
 - C) no tiene unidades
 - D) m/s^2
- 1.6. Si la energía cinética de un coche vale 400 kJ cuando va a 20 m/s, ¿qué valor tendrá dicha magnitud si la velocidad es de 10 m/s?
 - A) 300 kJ
 - B) 200 kJ
 - C) 100 kJ
 - D) 50 kJ

1.7. La energía potencial gravitatoria de un cuerpo de 5 kg situado a 40 m del suelo es: (Dato: $g = 9.8 \text{ m/s}^2$)
A) 1960 N
B) 980 J
C) 1960 J
D) 200 N
1.8. Si el peso de un cuerpo es 1176 N, podemos decir que su masa es: (Dato: g = 9,8 m/s²) A) 11524,8 N
B) 120 kg
C) 11524,8 kg
D) 120 N
1.9. Si una piedra se deja caer y llega al suelo con una velocidad de 29,4 m/s, podemos decir
que ha caído desde una altura de:
A) 844,76 m
B) 49 m
C) 44,1 m
D) 20 m
1.10. Un cuerpo recorre 2500 m por la acción de una fuerza horizontal de 30 N. El trabajo
realizado sobre el cuerpo en este proceso es:
A) 75000 J
B) 225·10 ⁴ J
C) 83,33 J
D) 225J
1.11. Si la energía cinética de un cuerpo de 50 kg es 2500 J, la velocidad que lleva el cuerpo es
de:
A) 50 m/s B) 5,10 m/s
C) 10 m/s D) 9,8 m/s
אווו ס, כּ וְט
1.12. Al sostener una mochila de 15 kg a una altura de 5 m durante 40 minutos, realizas un
trabajo de:
A) 600J
B) 0 J
C) 75 J
D) 3000 J

- 1.13. La fuerza normal siempre actúa:
 - A) Perpendicularmente al movimiento.
 - B) En sentido contrario al movimiento.
 - C) Verticalmente y hacia arriba.
 - D) Perpendicularmente a la superficie y hacia arriba.
- 1.14. La velocidad angular (ω) de una rueda que da 300 rpm (revoluciones por minuto) es:
 - A) $100\pi \text{ rad/s}$
 - B) 3600π rad/s
 - C) 10 rad/s
 - D) $10\pi \text{ rad/s}$
- 1.15. En el circuito de la figura, el amperímetro A_1 marca 0,6 A. ¿Qué lectura darán los amperímetros A_2 y A_3 ?
 - A) $A_2 = 0.4$ A; $A_3 = 0.2$ A
 - B) $A_2 = 0.2 A$; $A_3 = 0 A$
 - C) A_2 = 0,6 A; A_3 = 0,6 A
 - D) $A_2 = 1.2 A$; $A_3 = 1.8 A$



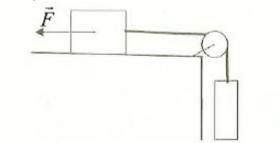
- 1.16. En el circuito de la figura, determinar el valor de la tensión que indicará el voltímetro V.
 - A) 3 V
 - B) 4,2 V
 - C) 6 V
 - D) 14,3 V



página 10 orria

- 1.17. Si la ecuación de movimiento de una onda harmónica transversal, en unidades del SI es: $y = 0.6 \sin (50\pi t 0.25x)$ sus características son:
 - A) A=0.25m; $\omega=0.5$ rad/s
 - B) A=0,6m; ω=50π rad/s
 - C) A=0,6m; ω = 50 rad/s
 - D) A = 0.3m; $\omega = 0.25 \text{ rad/s}$
- 1.18. ¿Qué propiedad de la onda viene indicada por la letra J?
 - A) Amplitud
 - B) Longitud de onda
 - C) Cresta
 - D) Frecuencia

1.19. Dada la onda de la figura, determina la amplitud y longitud de onda correspondientes.



0.5 m 1.0 m 1.5 m 2.0 m 2.5 m 3.0 m 3.5 m 4.0 m.

- A) A = 1 m; $\lambda = 1 \text{ m}$
- B) A=0.5 m; $\lambda=1 \text{ m}$
- C) A=0.5 m; $\lambda=0.5 \text{ m}$
- D) A=1m; $\lambda=2$ m
- 1.20. Si el periodo de una onda es 0,25 s y su longitud de onda 60 cm, la velocidad de propagación que le corresponde es:
 - A) 25,13 m/s
 - B) 0,15 m/s
 - C) 240 m/s
 - D) 2,4 m/s

altura	2. (2 puntos) Un cuerpo se lanza desde el suelo verticalmente y hacia arriba y al pasar por la altura de 4 m lleva una velocidad de 20 m/s. (AVISO: toma $g = 9.8 \text{ m/s}^2$) Calcula:								
a)	Con qué velocidad se ha lanzado.								
b)	Cuánto tiempo necesita, desde el momento del lanzamiento, para alcanzar el punto más alto.								
c)	La altura máxima alcanzada por el cuerpo, medida desde el suelo.								

3. (2 puntos)

El sistema de la figura se mueve por acción de la fuerza horizontal *F*. El valor de la fuerza es 1200 N, el coeficiente de rozamiento cinético entre el cuerpo y la superficie es 0,25 y las masas son: 40 kg (el cuerpo apoyado en la superficie) y 90 kg (el cuerpo que cuelga).

AVISO: toma $g = 9.8 \text{ m/s}^2$

a) Señala, razonadamente, el sentido del movimiento del sistema.

b) Calcula la aceleración del sistema.

c) Calcula la tensión de la cuerda.